eBook Download

BOOK EXCERPT:

Multivariable Calculus, Linear Algebra, and Differential Equations, Second Edition contains a comprehensive coverage of the study of advanced calculus, linear algebra, and differential equations for sophomore college students. The text includes a large number of examples, exercises, cases, and applications for students to learn calculus well. Also included is the history and development of calculus. The book is divided into five parts. The first part includes multivariable calculus material. The second part is an introduction to linear algebra. The third part of the book combines techniques from calculus and linear algebra and contains discussions of some of the most elegant results in calculus including Taylor's theorem in "n" variables, the multivariable mean value theorem, and the implicit function theorem. The fourth section contains detailed discussions of first-order and linear second-order equations. Also included are optional discussions of electric circuits and vibratory motion. The final section discusses Taylor's theorem, sequences, and series. The book is intended for sophomore college students of advanced calculus.

Product Details :

Genre: Mathematics
Author: Stanley I. Grossman
Publisher: Academic Press
Release: 2014-05-10
File: 992 Pages
ISBN-13: 9781483218038

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

Product Details :

Genre: Mathematics
Author: Andrew Browder
Publisher: Springer Science & Business Media
Release: 1998-07
File: 380 Pages
ISBN-13: 0387984593

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

This book provides all the material needed to work on Integral Calculus and Differential Equations using Mathematica. It includes techniques for solving all kinds of integral and its applications for calculating lengths of curves, areas, volumes, surfaces of revolution... With Mathematica is possible solve ordinary and partial differential equations of various kinds, and systems of such equations, either symbolically or using numerical methods (Euler's method,, the Runge-Kutta method,...). It also describes how to implement mathematical tools such as the Laplace transform, orthogonal polynomials, and special functions (Airy and Bessel functions), and find solutions of differential equations in partial derivatives.The main content of the book is as follows:PRACTICAL INTRODUCTION TO MATHEMATICA 1.1 CALCULATION NUMERIC WITH MATHEMATICA 1.2 SYMBOLIC CALCULATION WITH MATHEMATICA 1.3 GRAPHICS WITH MATHEMATICA 1.4 MATHEMATICA AND THE PROGRAMMING INTEGRATION AND APPLICATIONS 2.1 INDEFINITE INTEGRALS 2.1.1 Inmediate integrals 2.2 INTEGRATION BY SUBSTITUTION (OR CHANGE OF VARIABLES) 2.2.1 Exponential, logarithmic, hyperbolic and inverse circular functions 2.2.2 Irrational functions, binomial integrals 2.3 INTEGRATION BY PARTS 2.4 INTEGRATION BY REDUCTION AND CYCLIC INTEGRATION DEFINITE INTEGRALS. CURVE ARC LENGTH, AREAS, VOLUMES AND SURFACES OF REVOLUTION. IMPROPER INTEGRALS 3.1 DEFINITE INTEGRALS 3.2 CURVE ARC LENGTH 3.3 THE AREA ENCLOSED BETWEEN CURVES 3.4 SURFACES OF REVOLUTION 3.5 VOLUMES OF REVOLUTION 3.6 CURVILINEAR INTEGRALS 3.7 IMPROPER INTEGRALS 3.8 PARAMETER DEPENDENT INTEGRALS 3.9 THE RIEMANN INTEGRAL INTEGRATION IN SEVERAL VARIABLES AND APPLICATIONS. AREAS AND VOLUMES. DIVERGENCE, STOKES AND GREEN'S THEOREMS 4.1 AREAS AND DOUBLE INTEGRALS 4.2 SURFACE AREA BY DOUBLE INTEGRATION 4.3 VOLUME CALCULATION BY DOUBLE INTEGRALS 4.4 VOLUME CALCULATION AND TRIPLE INTEGRALS 4.5 GREEN'S THEOREM 4.6 THE DIVERGENCE THEOREM 4.7 STOKES' THEOREM FIRST ORDER DIFFERENTIAL EQUATIONS. SEPARATES VARIABLES, EXACT EQUATIONS, LINEAR AND HOMOGENEOUS EQUATIONS. NUMERIACAL METHODS 5.1 SEPARATION OF VARIABLES 5.2 HOMOGENEOUS DIFFERENTIAL EQUATIONS 5.3 EXACT DIFFERENTIAL EQUATIONS 5.4 LINEAR DIFFERENTIAL EQUATIONS 5.5 NUMERICAL SOLUTIONS TO DIFFERENTIAL EQUATIONS OF THE FIRST ORDER HIGH-ORDER DIFFERENTIAL EQUATIONS AND SYSTEMS OF DIFFERENTIAL EQUATIONS 6.1 ORDINARY HIGH-ORDER EQUATIONS 6.2 HIGHER-ORDER LINEAR HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS 6.3 NON-HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS. VARIATION OF PARAMETERS 6.4 NON-HOMOGENEOUS LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS. CAUCHY-EULER EQUATIONS 66.5 THE LAPLACE TRANSFORM 6.6 SYSTEMS OF LINEAR HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS 6.7 SYSTEMS OF LINEAR NON-HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS HIGHER ORDEN DIFFERENTIAL EQUATIONS AND SYSTEMS USING APPROXIMATION METHODS. DIFFERENTIAL EQUATIONS IN PARTIAL DERIVATIVES 7.1 HIGHER ORDER EQUATIONS AND APPROXIMATION METHODS 7.2 THE EULER METHOD 7.3 THE RUNGE-KUTTA METHOD 7.4 DIFFERENTIAL EQUATIONS SYSTEMS BY APPROXIMATE METHODS 7.5 DIFFERENTIAL EQUATIONS IN PARTIAL DERIVATIVES 7.6 ORTHOGONAL POLYNOMIALS 7.7 AIRY AND BESSEL FUNCTIONS

Product Details :

Genre:
Author: Cesar Perez Lopez
Publisher: Createspace Independent Publishing Platform
Release: 2016-01-16
File: 166 Pages
ISBN-13: 1523434171

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis. ^

Product Details :

Genre: Mathematics
Author: Michael Taylor
Publisher: Springer Science & Business Media
Release: 2013-11-11
File: 611 Pages
ISBN-13: 9781475741902

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature.

Product Details :

Genre: Differential equations
Author: Virginia W. Noonburg
Publisher: American Mathematical Soc.
Release: 2019-01-24
File: 402 Pages
ISBN-13: 9781470444006

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

Volume 1: Deterministic Modeling, Methods and Analysis For more than half a century, stochastic calculus and stochastic differential equations have played a major role in analyzing the dynamic phenomena in the biological and physical sciences, as well as engineering. The advancement of knowledge in stochastic differential equations is spreading rapidly across the graduate and postgraduate programs in universities around the globe. This will be the first available book that can be used in any undergraduate/graduate stochastic modeling/applied mathematics courses and that can be used by an interdisciplinary researcher with a minimal academic background. An Introduction to Differential Equations: Volume 2 is a stochastic version of Volume 1 (“An Introduction to Differential Equations: Deterministic Modeling, Methods and Analysis”). Both books have a similar design, but naturally, differ by calculi. Again, both volumes use an innovative style in the presentation of the topics, methods and concepts with adequate preparation in deterministic Calculus. Errata Errata (32 KB)

Product Details :

Genre: Mathematics
Author: Anil G Ladde
Publisher: World Scientific Publishing Company
Release: 2013-01-11
File: 636 Pages
ISBN-13: 9789814397391

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.

Product Details :

Genre: Mathematics
Author: Harold M. Edwards
Publisher: Springer Science & Business Media
Release: 1994-01-05
File: 508 Pages
ISBN-13: 0817637079

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Product Details :

Genre: Mathematics
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
Release: 2014-02-26
File: 596 Pages
ISBN-13: 9789814583954

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

This book presents a modern treatment of material traditionally covered in the sophomore-level course in ordinary differential equations. While this course is usually required for engineering students the material is attractive to students in any field of applied science, including those in the biological sciences. The standard analytic methods for solving first and second-order differential equations are covered in the first three chapters. Numerical and graphical methods are considered, side-by-side with the analytic methods, and are then used throughout the text. An early emphasis on the graphical treatment of autonomous first-order equations leads easily into a discussion of bifurcation of solutions with respect to parameters. The fourth chapter begins the study of linear systems of first-order equations and includes a section containing all of the material on matrix algebra needed in the remainder of the text. Building on the linear analysis, the fifth chapter brings the student to a level where two-dimensional nonlinear systems can be analyzed graphically via the phase plane. The study of bifurcations is extended to systems of equations, using several compelling examples, many of which are drawn from population biology. In this chapter the student is gently introduced to some of the more important results in the theory of dynamical systems. A student project, involving a problem recently appearing in the mathematical literature on dynamical systems, is included at the end of Chapter 5. A full treatment of the Laplace transform is given in Chapter 6, with several of the examples taken from the biological sciences. An appendix contains completely worked-out solutions to all of the odd-numbered exercises. The book is aimed at students with a good calculus background that want to learn more about how calculus is used to solve real problems in today's world. It can be used as a text for the introductory differential equations course, and is readable enough to be used even if the class is being "flipped." The book is also accessible as a self-study text for anyone who has completed two terms of calculus, including highly motivated high school students. Graduate students preparing to take courses in dynamical systems theory will also find this text useful.

Product Details :

Genre: Mathematics
Author: Virginia W. Noonburg
Publisher: The Mathematical Association of America
Release: 2014-05-02
File: 315 Pages
ISBN-13: 9781939512048

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>




eBook Download

BOOK EXCERPT:

Product Details :

Genre:
Author: N. Gupta; R.S. Dahiya
Publisher: Firewall Media
Release: 2006-08
File: 680 Pages
ISBN-13: 8170088674

#1 eBook Free in [pdf] [kindle] [epub] [tuebl] [mobi] [audiobook], #1 New Release 2020 >>